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Stochastic variability of gene expression in isogenic
cell population “expression noise”

* isogenic cells
« single cell measurements

. 2 ) .
Noise measure ¢ - variance

M - mean

Noise a phenotype that can be regulated

Noise can be beneficial — increase evolutionary plasticity

Noise might be harmful for a response that needs to be tightly
requlated



Sources of gene expression noise

Intrinsic noise — gene specific related to stochasticity
of the gene expression process
(transcription, translation, degradation of mMRNA and protein)

Extrinsic noise — environment, cell size, noise propagated
trough interaction network ...

Random Poisson process

Noise scaling with abundance CV? = 1//,[

Fano Factor (Fano Noise) F = CV? U

For Poisson process: F=1



As expected from a random stochastic process
noise (squared) scales with abundance

Newman, J.R. et al. Single-cell proteomic analysis of

Bar-Even, A. et al. Noise in protein expression - | analy
scales with natural protein abundance. Nat S. cerevisiae reveals the architecture of biological
Genet. 2006 ' noise. Nature 441, 2006.
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 Gene specific noise properties:



Measuring divergence from trend line

* DM measure (Newman et al.)
— Euclidean distance (in y-direction)

* Noise differential (Salari et al.)
—ratio of Fano factors

* Noise residua (Bar-Even et al.)
—log (noise differential)



Expectations based on theoretical models

Findings on Newman et al.

 Efficient transcription and transcription bursts should
correlate with increased noise

highly statically significant correlation
between TATA box and increased noise
 Efficient translation (multiple proteins form the same
transcript) should correlate with increased noise

No highly statically significant correlation
between Codon Usage (tAl — tRNA Adaptation Index) and noise

This lack of correlation is due to averaging effect of various stochastic
processes across all genes while the contribution of these processes
might be different in different groups



Two populations of genes based codon adaptation index
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Two populations of genes based codon usage

o

-

log.( DM +c)

Noise differontis

N

QO

o
L

e
]
| =
@
o
te—
o
—
@
bl
E
o
pd

|L)14'_‘-l C'M *C)
L

1 T

0.3 04 0.5
tRNA adaptation index (tAl)

Spearman correlation [ ;
Protein groups between tAl and DM logo( P-value) Number of proteins

YEPD SD|  YEPD SD|  YEPD SD
All proteins ' 0.070 0049  -3.0 1.6 2205 2054
Nonribosomal 0.150 0.144  -11.1 96| | 2051 1926
Ribosomal 0.413 -0.420 7.0 7.0 154 148




Noise level (DM) Is correlated with
translation related features

Codon Usage b 5'UTR strcuture
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Looking at the interplay between
transcription and translation related features

* Transcription — TATA box
* Translation — codon usage (tAl measure)



Compression of the relation between Fano factor and
codon usage for TATA and no-TATA genes

< TATA genes
A non-TATA genes




The impact of translation efficiency (measured as noise differential)
IS of the same magnitude as of transcription efficiency

< TATA genes with high tAl
A non-TATA genes with high tAl
non-TATA genes with low tAl
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High/low tAl gap Is more pronounced when
normalized by mRNA level

O TATA genes with high tAl
o non-TATA genes with high tAl
non-TATA genes with low tAl
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Noise regulation within large GO groups

Response to stimulus genes Cellular component organization or biogenesi Ribosome biogenesis genes
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xamining the othesis that genes participating In

complexes are less noisy

- In Newman et al. studies: no genome-wide correlation between complex
participation and noise

- Qur studies: indication of such relation within individual functional groups

Cellular component organization or biogenesis genes Regulation of biological process genes

Negative regulation of biological process genes
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Summary

« Genomic features associated with

efficient translation associate with
Increased noise

* Noise level Is defined by a complex trade-off
which cannot be completely captured looking at
genome-wide average behavior and it is often
helpful to look at it from the perspective of
iIndividual functional gene groups
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